Course Descriptions

Introduction to Welding Processes

WEL100

Designed to give the non-welding major competencies in the three main welding processes used in industry today: shielded metal arc welding (SMAW), gas metal arc welding (GMAW), and gas tungsten arc welding (GTAW). Introduction to oxy-acetylene and plasma cutting systems will be included. 3 Credits (2 Lecture - 3 Lab)

Acetylene/Electric Welding

WEL101

Introduction to acetylene and electric welding for HVAC students. Acetylene welding of sheet metal. Oxyacetylene cutting and brazing. Basic skills in Shielded Metal Arc Welding (SMAW) and Oxygen Fuel Welding (OFW). 2 Credits (1 Lecture - 3 Lab) Spring Only.

Welding Blueprint and Layout

WEL102

Introduction to blue print reading fundamentals specifically for students in the welding field. Emphasis on the interpretation and understanding of mechanical drawings, specifications, and notes. The American Welding Society (AWS) welding symbols and related applications found in the welding and fabrication industry are covered. Fundamentals of CAD are introduced and used to layout projects and interpret prints. 3 Credits (2 Lecture - 3 Lab)

Collision Repair Welding

WEL105

Designed to prepare collision repair students with the needed welding competencies to return a vehicle to its pre-accident condition. Oxy-acetylene welding, gas metal arc welding, and gas tungsten arc welding are covered. Introduction of cutting operations with oxy-fuel and plasma systems will be included. 3 Credits (2 Lecture - 3 Lab)

Oxy-Fuel Welding and Cutting I

WEL113

Course work includes introduction to shop safety, welding and brazing of various metals in all positions, the theory of welding and brazing, and the cutting of ferrous metals using plasma, oxy-acetylene hand and machine methods. Basic welding layout is included. 2 Credits (1 Lecture - 3 Lab) Corequisite(s): WEL115. Fall Only.

Shielded Metal Arc I

WEL114

Introduction to the principles and practices of basic Shielded Metal Arc Welding (SMAW) using various types of mild steel electrodes in all positions. The fundamentals of AC and DC current and various types of power sources are covered. 2 Credits (1 Lecture - 3 Lab) Corequisite(s): WEL116. Fall Only.

Oxy-Fuel Welding and Cutting II

WEL115

Continuation of the theory and applications, with advanced skill development in welding, brazing, and cutting. 2 Credits (0 Lecture - 6 Lab) Corequisite(s): WEL113. Fall Only.

Shielded Metal Arc II

WEL116

Hands-on practice with various electrodes and power sources using AC and DC current in all positions. 2 Credits (0 Lecture - 6 Lab) Corequisite(s): WEL114. Fall Only.

Gas Metal Arc I

WEL120

Principles and applications of Gas Metal Arc Welding (GMAW), applied to ferrous and non-ferrous metals and their alloys. Hands-on work includes the introduction of single and multi-pass welds using a variety of electrode wire types, diameters, and transfer modes. 2 Credits (1 Lecture - 3 Lab) Corequisite(s): WEL124. Spring Only.

Gas Tungsten Arc I

WEL123

Introduction to the Gas Tungsten Arc Welding (GTAW) process. Theory is applied to related equipment, electrical concepts, material properties, arc characteristic, puddle control, and appropriate application of filler materials. Welding of ferrous and non-ferrous metals in all positions is covered. 2 Credits (1 Lecture - 3 Lab) Prerequisite(s): WEL113. Corequisite(s): WEL129. Spring Only.

Gas Metal Arc II

WEL124

Continued laboratory practice of Gas Metal Arc Welding (GMAW) introduced in prior coursework. Activities include fundamental applications on ferrous and non-ferrous metals in all positions using various modes of metal transfer and wire electrodes. 2 Credits (0 Lecture - 6 Lab) Corequisite(s): WEL120. Spring Only.

Gas Tungsten Arc II

WEL129

Additional GTAW skill development, with emphasis on the welding of ferrous and non-ferrous metals in various joint configurations. Welding is done using all positions. Joining dissimilar metals and metal identification are covered. 2 Credits (0 Lecture - 6 Lab) Prerequisite(s): WEL113. Corequisite(s): WEL123. Spring Only.

Flux Cored and Sub-Arc I

WEL210

Advanced theory on Flux-Cored Arc Welding (FCAW) and Submerged Arc Welding (SAW). Discussion includes advantages and disadvantages of the two processes. Other topics include technical terms, gases, their mixtures, and the various types of fluxes used. 2 Credits (1 Lecture - 3 Lab) Corequisite(s): WEL214. Fall Only.

Gas Tungsten Arc III

WEL213

Advanced gas tungsten arc welding, building upon theory covered in previous course work. Welding applications of special metals such as copper, nickel, cobalt, and titanium are discussed. Theory and practice of GTAW on ferrous and non-ferrous metals in all positions are covered, as are pipe and tube set-up and welding of open root and consumable inserts. 2 Credits (1 Lecture - 3 Lab) Prerequisite(s): WEL123 and WEL129. Corequisite(s): WEL219. Spring Only.

Flux Cored and Sub-Arc II

WEL214

Continuation of the hands-on activities, including using the flux-cored arc welding process using semi-automatic machines in all positions with a variety of electrode wires, diameters, and gases. Submerged arc welding is performed in the flat and horizontal position with semi-automatic torches using gravity or pressurized systems. Instruction on machine applications is also included. 2 Credits (0 Lecture - 6 Lab) Corequisite(s): WEL210. Fall Only.

Gas Tungsten Arc IV

WEL219

Continued hands-on study of gas tungsten arc welding with extensive welding of ferrous/non-ferrous metals and pipe and tube. Basic welding positions common to the pipe and tube industry; 2G, 5G, 6G will be used. Restriction weldments similar to those found when welding boiler tube water-walls are employed. 2 Credits (0 Lecture - 6 Lab) Prerequisite(s): WEL123 and WEL129. Corequisite(s): WEL213. Spring Only.

Shielded Metal Arc III

WEL230

Study of various joint designs for the various positions with different types of electrodes. Advanced shielded metal arc techniques for welding plate to AWS standards along with various techniques used in industry. 2 Credits (1 Lecture - 3 Lab) Prerequisite(s): WEL114 and WEL116. Corequisite(s): WEL234. Fall Only.

Shielded Metal Arc IV/Pipe Welding

WEL233

Study of structural and pipe welding techniques using various types of electrodes using shielded metal arc welding. Specifications of the ASME, ASTM, and API are used and the AWS numbering systems are covered. 2 Credits (1 Lecture - 3 Lab) Prerequisite(s): WEL230 and WEL234. Corequisite(s): WEL239. Spring Only.

Shielded Metal Arc V

WEL234

Introduction to the standard practice of joining plate using the open root and backing bars techniques. The E-6010 and E-7018 electrodes are used. All position welding of plate of various joint designs, including variation of bevels, is also covered. 2 Credits (0 Lecture - 6 Lab) Prerequisite(s): WEL114 and WEL116. Corequisite(s): WEL230. Fall Only.

Shielded Metal Arc VI Pipe Welding

WEL239

Standard practices of joining pipe using the open root technique. The E-6010 and E-7018 electrodes will be used. All welding positions will be covered (2G, 5G, 6G & 6GR). The techniques associated with API 1104 down-hand welding technique will be covered. Welding processes may be combined. 2 Credits (0 Lecture - 6 Lab) Prerequisite(s): WEL230 and WEL234. Corequisite(s): WEL233. Spring Only.

Basic CNC Programming

WEL240

Introduction to the theory and applications of programming and operation of CNC cutting equipment. Set up of equipment, electrical concepts, and use of computer software to create programs. CAD/CAM software is used to produce and trouble shoot programs. 3 Credits (2 Lecture - 3 Lab) Prerequisite(s): WEL102.

Robotic Welding

WEL248

Introduction to robotics, robot classification and the application of robotics to the welding industry. Study includes the safety of robotics in industrial applications and the different types of end effectors. Lab work includes operating various robotic systems using computer and teach pendant modes. 3 Credits (2 Lecture - 3 Lab) Prerequisite(s): WEL120. Spring Only.

Industrial Processes

WEL301

Exploration of the various automated cutting and welding processes used in the welding industry. Topics include a basic introduction to the concepts of continual process improvement, the Deming management philosophy, statistical process control (SPC), and other process improvement philosophies. Focus on gaining insight into the problems encountered in achieving quality and understanding important techniques used to solve quality problems. 3 Credits (2 Lecture - 3 Lab) Spring Only.

Fabrication of Alloys

WEL400

Fundamental principles of welding metallurgy applied to the joining of ferrous and non-ferrous metals. Use of iron-carbon diagrams and isothermal transformation diagrams to show changes in material properties caused by heat. Lab topics to include cladding, joining of ferrous and non-ferrous metals, surfacing, heat treatments, and corrosion. 3 Credits (2 Lecture - 3 Lab) Prerequisite(s): MSC106 and WEL120 and WEL123 and WEL210 and WEL230. Fall Only.

Industrial Weld Design

WEL410

Introduction to the design, drawing, manufacturing engineering, and cost considerations of creating weldments. Includes engineering graphics review, estimation of welding costs, production considerations needed in designing and fabricating of weldments, tolerance dimensioning, mechanical and section properties of materials, load and stress analysis, and code requirements for welding. Codes covered include AWS D1.1, API 1104, and ASME Section 9. 3 Credits (2 Lecture - 3 Lab) Prerequisite(s): CET230 or CET275. Fall Only.

Welding Codes and Procedures

WEL420

Review of standard welding terms and definitions along with the standard welding symbols used in the welding industry. Visual inspection of weld discontinuities commonly found in welding will be emphasized. The requirements and duties of the certified welding inspector will be discussed. Qualifications of welding procedures and specifications along with qualification of the welding operator are covered, with respect to AWS, API, and ASME standards. 3 Credits (2 Lecture - 3 Lab) Prerequisite(s): QAL237 and WEL102. Spring Only.

Project Proposal Lecture

WEL494

Theory and practice of defining, planning, and cost estimation of solutions to engineering problems. Emphasis on solving problems using the tools, techniques, and practices common to industry and engineering profession. Special emphasis will be placed on defining the purpose of a project proposal, who should write the proposal, and what should be contained in the proposal. Course work includes a formal project proposal to be completed and tracked using Microsoft Project or other comparable software. 2 Credits (2 Lecture)

Welding Internship

WEL495

Specialized off-campus, industry-based work experience applies knowledge and skills developed during Welding and Welding Engineering Technology instruction. The experience also provides a functional understanding of the work environment, hones interpersonal and technical communication skills, and enhances social and civic competencies. Conducted in accordance with explicitly defined guidelines and procedures. 1 Credit (0 Lecture - 20 Internship)

Senior Welding Project

WEL496

Individualized learning experience working under a faculty mentor, completing a finished project as outline by a project proposal from prior coursework. Successful completion of project requires a finished project, including executive summary, an evaluation process, and a verbal presentation. 1 Credit (0 Lecture - 3 Lab) Prerequisite(s): WEL494.